
Acta Technica 62 (2017), No. 4A, 753�762 c© 2017 Institute of Thermomechanics CAS, v.v.i.

An improved strategy of map cache
prefetching

Hongxin Ma2, 3, Hui Qi2, 5, Xiaoqiang Di2,

Jinqing Li2, Fengrong Zhang4

Abstract. Map cache system has a good e�ect on accelerating the response speed of the

dynamic vehicle navigation system and reducing the amount of network transmission data, while

the cache prefetch can further improve the performance of the cache system. In this paper, we

deeply study the cache prefetch strategy and propose the heuristic map tiles prefetch strategy

based on road network analysis, which �rst analyzes the front road network where the vehicle will

travel and identi�es the front intersection so as to predict the trajectory of the vehicle, and then

combines the result and that predicted by heuristic prefetch strategy to produce more accurate

prediction. The experiments show that the prefetch strategy based on road network analysis can

further improve the performance of the cache system than the pure heuristic prefecth strategy,

signi�cantly reducing the amount of map tiles needed by the vehicle navigation system.

Key words. Map tiles, vehicle navigation system, cache prefetch, heuristic cache prefetch.

1. Introduction

Based on the wireless communication network, the dynamic vehicle navigation
system realizes the information exchange and sharing between the vehicle and the
vehicle, the vehicle and the road as well as the vehicle and the tra�c information
center, which can provide more services, reduce service costs and improve the user
experience and tra�c conditions [1,2]. However, the performance of wireless network
in�uences and restricts the development of dynamic vehicle navigation system. In
practical applications, the 4G LTE network can provide downlink rates of 30.8Mbps,
uplink rates of 19.4Mbps, and TCP handshake delay of 127ms at 95% of cases [3].

1Acknowledgement-This work is supported in part by the National Social Science Fund of China
under Grant No.17BSH135.

2Workshop 1 - School of Computer Science and Technology, Changchun University of Science
and Technology

3Workshop 2 - Training Department, Aviation University Air Force, Changchun, China
4Workshop 3 - Northeast Normal University,Changchun, China.
5Corresponding author:Hui Qi; e-mail: qihui@cust.edu.cn

http://journal.it.cas.cz

qihui@cust.edu.cn


754 HONGXIN MA, HUI QI, XIAOQIANG DI, JINQING LI, FENGRONG ZHANG

In contrast, the �ash memory commonly used in mobile devices has a write delay
of less than 1 ms, a read delay of less than 0.3ms and a bandwidth of more than
2GB/s[4]. Thus, the performance of today's wireless networks is far lower than that
of local storage. According to the principle of memory architecture, local storage is
usually used as a cache for other computers on the network.

Literature [5] designed a cache system for dynamic navigation systems. It helps
to improve the map display at the client, but it won't be helpful enough if it caches
only the map tiles needed every time. The map display will be improved more
signi�cantly if the cache system can forecast the map tiles in possible demand next
time and cache them in advance [6].

Suppose the vehicle stands in the tile aij at the time t. The tiles to be cached in
the �rst option will be:

A
(t)
1 =

 a(i+2)(j−2) · · · a(i+2)(j+2)

...
. . .

...
a(i−2)(j−2) · · · a(i−2)(j+2)


The tiles to be cached in the second option will be:

A
(t)
2 =

 a(i+1)(j−1) · · · a(i+1)(j+1)

...
. . .

...
a(i−1)(j−1) · · · a(i−1)(j+1)


Suppose the vehicle moves from the tile aij to the tile ai(j+1) at a future moment

t
′
. The tiles for display (A

(t
′
)

d ) are all contained in A
(t)
1 . In the �rst option, the

navigation system can display the map without waiting for the cache system to

fetch the A
(t

′
)

2 . However, in the second option, the navigation system cannot display

the map before A
(t

′
)

2 is fetched by the cache system, as not all tiles of the A
(t

′
)

d are

contained in A
(t)
2 . Therefore, the cache system with prefetch will perform better

than the cache system withoutprefetch (cache on demand).
Now suppose there is another cache design (the third option), a cache system

that has an ideal forecasting capacity and caches the current and next required tiles
every time. According to this hypothesis, in the third option, the tiles to be cached
at t will be:

A
(t)
3 = A

(t)
d ∪A

(t
′
)

d

 a(i+1)(j−1) · · · a(i+1)(j+1)

...
. . .

...
a(i−1)(j−1) · · · a(i−1)(j+1)


In summary, the prefetch option with accurate forecasting is the best. As such,

how to improve the forecast accuracy is the focus of prefetch strategy research and
this paper. Next, a survey of map tiles prefetch strategies will be introduced. Then
the prefetch strategy proposed by this paper, a heuristic prefetch strategy based on
road network analysis, will be described and �nally veri�ed through a series of tests.



AN IMPROVED STRATEGY 755

2. Related work

In [8], a location-aware prefetching mechanism was proposed, which was intended
for European waterway network system. Since the users of that system often travel
on main rivers, their routes can be forecast by means of river information as well
as ship speed and direction. In [9], a prefetch algorithm based on Hilbert curves
was proposed. It maps two-dimensional Euclidean distances into one-dimensional
space via Hilbert curves, thus reducing the prefetched data to some extent. This
algorithm is based on the fact that the user access pattern has a spatial locality,
that is, it is more possible for the user to request the objects spatially adjacent
to the currently accessed object. The forecasting of user behavior is completely
based on spatial distance. The objects closer to the currently accessed object are
more possible to get access to. For the objects with the same distances, correct
forecasting is impossible. In [10], two prefetch approaches were recommended. The
�rst approach is probability-based to forecast the tiles for possible future access
by considering the probability of transition between two neighboring tiles and the
position of screen center in the current tile. The second approach is based on the
movement features of the �rst k steps. It takes the movement sequence of the �rst k
steps as the current state and models the state transition through the Markov chain
in order to predict the tiles for next access. The two approaches are probability-
based in nature needing a large amount of data statistics to determine the transition
probability, and therefore more suitable for server caching. The [11] improved the
probability-based prefetch approach recommended in [10], and presented a Markov
prefetch model based on Zipf distribution. The transition probability matrix in that
model is no longer targeted at all the tiles, but focused on the tiles with frequent
user access in line with the characteristics of Zipf distribution. Thus it has e�ectively
downsized the transition probability matrix and reduced the storage space. In [10],
a heuristic prefetch strategy was presented to predict the tiles for future request
in accordance with the movement features and cache hit ratio of the �rst k steps.
Compared with the second approach in [10], this strategy is more time-related and
more suitable for regular navigation application.

The above approaches, except for that in [8], take no account of the geographic
background of map data. Even in [8], only the river information has been consid-
ered. But there is another approach, other than the above ones. According to that
approach, geographic background information has driven the user's access to map
data and thus shall be taken into consideration in forecasting the data access behav-
ior. In , a prediction model was provided to determine hot spots in the map. That
model mainly uses geographic background information, including the information on
residential area, main tra�c, coastline and points of interest, to output a Boolean
vector set. In the approach in was improved by determining the access probability
of map tiles through an ordinary least square regression model, which can automat-
ically decide on useful geographic background according to the information on user
access. In , the model in was improved into a model with an arti�cial neural network
that can also be used for cache replacement . The above prefetch methods based
on geographic background are usually used for server caching and also suitable for



756 HONGXIN MA, HUI QI, XIAOQIANG DI, JINQING LI, FENGRONG ZHANG

clients' map roaming.

3. Heuristic prefetch strategy

The prefetch strategy proposed by this paper is based on the strategy in [12]. To
better describe this strategy, the following variables shall be de�ned:

d: Capacity of historical movement list. During each movement into a tile, the
algorithm records the row and column indexes of the tile on a �rst-in-�rst-out (FIFO)
linked list.

he: Linked list of column indexes. Whenever the vehicle enters a tile, the column
index of the tile shall be stored into the linked list. If the capacity of the linked list
is d before the data insertion, the new element shall be inserted at the tail after the
deletion of the head element.

hs: Linked list of row indexes.
hitRatio: Linked list of cache hit ratios. This list records the cache hit ratio for

every movement.
With the above variables, the following variables can be calculated:

Easting =

∫ d−1

i=1

(he [i+ 1]− he [i])× hitRatio[i+ 1]

Southing =

∫ d−1

i=1

(hs [i+ 1]− hs [i])× hitRato[i+ 1]

Two types of information are contained in Easting and Southing respectively:
prediction accuracy and stability of Easting or Southing movement in the �rst d-1
steps. Based on the values of Easting and Southing, the next movement direction
can be forecast. It can be found through observation that the values of Easting and
Southing have something to do with the value of d. If the movement in the �rst
d-1 steps is stable, the values of Easting and Southing will increase with the value
of d. This will bring some trouble to prediction, as the thresholds of Easting and
Southing may vary with the value of d. Therefore, Easting and Southing shall be
normalized and rewritten as follows:

Easting =

∫ d−1

i=1
(he [i+ 1]− he [i])× hitRatio[i+ 1]∫ d−1

i=1
(he [i+ 1]− he [i])

Southing =

∫ d−1

i=1
(hs [i+ 1]− hs [i])× hitRatio[i+ 1]∫ d−1

i=1
(hs [i+ 1]− hs [i])

If the denominator is 0, this equation will be false so that Easting or Southing
can be directly equal to 0. If Easting ≥ 0.5, the vehicle will move eastward into
the right tile. If Easting < −0.5, the vehicle will move westward into the left tile.
If −0.5 ≤ Easting < 0.5, the vehicle will move neither eastward nor westward and
the tile column index to enter will remain unchanged. Similarly, if Southing ≥ 0.5,



AN IMPROVED STRATEGY 757

the vehicle will move southward into the tile below. If Southing < −0.5, the vehicle
will move northward into the tile above. If −0.5 ≤ Southing < 0.5, the vehicle will
move neither southward nor northward and the tile row index to enter will remain
unchanged.

After the tile to enter is forecast, the tile to be prefetched can be determined by
the following rule:

Suppose the tile set cached at t is S(t) and the central tile is aij . Based on
the values of Easting and Southing, the row and column indexes of the central tile

(possibly aij′ or ai′ jor ai′ j′ ) at t
′
can be predicted as i

′

= i − bSouthing + 0.5c
and j

′
= j+ bEasting + 0.5c respectively. Once the central tile at t

′
is determined

(forecast), the tile set needed by the system at t
′
will be:

The tile set to be prefetched at t will be A
(t

′
)

d − S(t).

4. Heuristic prefetch strategy based on road network analysis

4.1. Prefetch algorithm

The prefetch strategy in [12] considers only historical movement and historical
prediction, imposing no restrictions on movement conditions. This strategy can
achieve high forecast accuracy when the user moves regularly (rather than totally
random map roaming). If the user moves regularly under limited conditions, the
consideration of such conditions can further improve the forecast accuracy.

The application of onboard navigation is a good �t for the above hypothesis.
The navigated vehicle usually moves along the road. If there is no road in a tile,
the movement from a neighboring tile to this tile won't occur. If there is no road
between the tile aij and its neighbor ai′ j′ , the movement from aij to ai′ j′ won't
occur. It can be seen that the user's movement under navigation is limited by road
network. Therefore, adding road network analysis to heuristic prefetch strategy will
be helpful for improving the prefetch performance.

4.2. Prefetch algorithm

1. Determine the row and column indexes i and j of the tile where the vehicle is
located at the time t, in order to obtain the road network data for that tile.

2. Determine the starting point and direction of road network search in accor-
dance with the current road information and the driving direction, and search
the road network data of the current tile for intersections.

3. If no intersection is found, the row and column indexes i
′
and j

′
of the tile to

be entered at t
′
(t

′
> t) can be determined through searching along the road

and then the tile set needed at t
′
can be forecast, as shown below:

A
(t

′
)

d = {axy|i
′ − 1 ≤ x ≤ i

′
+ 1, j

′ − 1 ≤ y ≤ j
′
+ 1

4. Otherwise (an intersection is found), the tile set to be entered at t
′
can be



758 HONGXIN MA, HUI QI, XIAOQIANG DI, JINQING LI, FENGRONG ZHANG

determined through searching along the road behind the intersection to forecast

the needed tile set A
(t

′
)

d1 . On the other hand, the row and column indexes i
′

and j
′
of the central tile can be forecast according to the values of Easting and

Southing, and the needed tile set A
(t

′
)

d2 can be calculated as per the equation

(1). The two tile sets can be combined as: A
(t

′
)

d = A
(t

′
)

d1 ∩A
(t

′
)

d2 .

It is at the step 4 that heuristic prefetch strategy is applied to the above algo-
rithm. That is to say, this strategy is needed only when an intersection is found,
otherwise the central tile at t

′
can be determined by searching along the road. Fur-

thermore, the step 4 is not to directly use the heuristic prefetch, but to combine
the forecast results of heuristic prefetch and road network search. The key of this
algorithm is road network search, which is also a di�culty due to the complexity of
road network structure, especially in terms of intersection identi�cation.

4.3. Road network structure

Road network structure, the basis of road network search and intersection identi-
�cation, is to be brie�y described in this section. Road network is a graph structure
composed of nodes and road segments, as shown in Fig. 1. Nodes are divided into
shape nodes (such as the solid nodes n1 and n2 to connect not more than two road
segments) and intersection nodes (such as the hollow nodes n3 and n4 to connect
more than two road segments). A road segment often has a direction, which decides
the traveling direction of a vehicle. In addition, the concept of road link has been
introduced. The road link L is a road segment sequence <si, sj, · · · ,sk >, where the
terminal node of one road segment is the initial node of the next segment. Except
for si (initial node) and sk (terminal node), all the nodes are shape nodes. In a road
network model, a wider road is often expressed by two or more road links, such as
<s3, s1 >or <s2, s4 >. But a narrower road is expressed by only one directionless
road link, such as <s7 >, <s8 > or <s9 >, where a vehicle can run in two ways.

Fig. 1. Road network structure



AN IMPROVED STRATEGY 759

4.4. Intersection identi�cation

According to the de�nition of road network structure, every intersection node is
connected to more than 2 road segments. But in practice, a node connected to more
than 2 road segments may not be an intersection node. Suppose that in the Fig. 1,
the vehicle is running on the road segment s2 in the given direction at the time t.
Then it will be very easy to identify the front intersection as n4 according to the road
network structure. If n4 is beyond the current tile, the vehicle will move eastward
along the road link <s2, s4 > as per the prefetch algorithm in this paper. The central
tile at t

′
can also be determined to �nally �gure out the tile to be prefetched at t.

The road network structure in Fig. 2 is more complex. Suppose the vehicle is
running on the road segment s2 in the given direction. The front node n2 is shown
as an intersection, but in fact, it is not. That is to say, as long as the vehicle doesnot
make a big steering maneuver (for example, from s2 via n2 and n1to s1), it will still
stick to the road link <s2, s4 >. In this case, the tile to be prefetched is the same
as in the above case. Thus, the decisive intersection is still n4.

Fig. 2. Road network structure with true and false intersections

As shown in Fig. 2, the most important thing in the road network search is to
look for true intersection nodes such as n3and n4, or to eliminate false nodes such
as n1 and n2. According to the study, the di�erence between these two types of
intersection nodes is that n3 and n4 can force the vehicle into a new direction �a
far cry from the original � for a distance that is normally longer than that between
n3 and n4 or between n1 and n2.

In this paper, an algorithm has been designed to tell true intersection nodes from
false ones. The goal of this algorithm is not to mistake a true intersection node for
a false one given the complexity of road network structure. To better describe this
algorithm, several variables shall be included:

n:the intersection node to be identi�ed;
hn: the direction of the n-linked road segment, where n is the road segment end;
hni: the direction of the n-linked road segment, where n is the road segment

origin and i is the road segment number;
sni: the road segment starting from n, where i is the road segment number.
The steps to implement the algorithm are as follows:



760 HONGXIN MA, HUI QI, XIAOQIANG DI, JINQING LI, FENGRONG ZHANG

S1:To determine the direction of search according to the vehicle direction and
the road segment direction.

S2:To search the road network until the intersection node n is found.
S3:To expand the node n. Expand all the road segments starting from n, calculate

the angles between all the road segment directions and hn, and record hnx, the
direction of the road segment with a smallest angle.

To test the algorithm, a �eld test has been done. In this paper, 135 intersections
were tested, including 97 true intersections. The test results show that this algorithm
has correctly identi�ed all the true intersections. In this test, 3 false intersections
are identi�ed as true intersections, but this does not a�ect the subsequent work
of the cache system, because the goal of this algorithm is not to identify the true
intersection as false intersection.

5. Analysis of test results

In this section, the prefetch strategy proposed by this paper will be compared
with that proposed in [12] through a �eld test, mainly in terms of two performance
indexes, namely cache hit ratio and the number of the requested map tiles. The
former index re�ects the response speed of navigation system, while the latter index
reveals the data resource the system needs. To speed up the system response, data
can be increased, like in the �full prefetch� strategy. This, however, is far from a
good solution, as the growth in data will result in the increase in network bandwidth
resource, storage resource and computing resource, which, in turn, may slow down
the system response easily. Therefore, a good prefetch strategy shall achieve a higher
cache hit ratio with fewer data.

The prefetch algorithm proposed by this paper (hereinafter referred to as �algo-
rithm 1�) and that proposed in [12] (hereinafter referred to as �algorithm 2�) are
used to test the data sets and calculate the cache hit ratio and the number of the
requested tiles. As a result, 4 groups of test results can be yielded, including the
cache hit ratio H1 of algorithm 1, the cache hit ratio H2 of algorithm 2, the number
of the requested tiles M1 of algorithm 1, and the number of the requested tiles M2

of algorithm 2. Through the analysis of H1 − H2and M1−M2, the performance of
the two algorithms can be compared.

Test the data set 1 with the two algorithms. Map the value of every component
in 4H (4H =H1−H2) to the two-dimensional coordinate system, as shown in Fig.
3(a). It is not hard to see that 4H > 0 (because two of its components are >
0 and the others are = 0). As a matter of fact, the average of H1 components
is 0.957, the average of H2 components is 0.950, and therefore the average of 4H
components is 0.007. The cache hit ratio of algorithm 1 is 0.007 (or 0.73%) higher
than that of algorithm 2 on average. Then map the value of every component in4M
(4M =M1−M2) to the two-dimensional coordinate system, as shown in Fig. 3(b).
The vertical coordinates of the nodes are positive or negative, but the negatives are
more and bigger (in terms of absolute value) than positive ones. In fact, the sum
of M1 components is 193, the sum of M2 components is 201, and therefore the sum
of 4M components is -8. The requested tiles in algorithm 1 are 8 tiles (or 3.98%)



AN IMPROVED STRATEGY 761

fewer than in algorithm 2.

Fig. 3. Di�erence between algorithms 1 and 2 in testing the data set 1.

Test the data set 2 in the same way. Map the value of every component in
4H to the two-dimensional coordinate system, as shown in Fig. 4(a), where one
component is > 0 and the others are = 0. As a matter of fact, the average of
H1 components is 0.947, the average of H2components is 0.940, and therefore the
average of 4Hcomponents is 0.007. The cache hit ratio of algorithm 1 is 0.007 (or
0.74%) higher than that of algorithm 2 on average. Then map the value of every
component in 4M to the two-dimensional coordinate system, as shown in Fig. 4(b).
It is clear that the negative components in Fig. 4(b) are more and bigger (in terms
of absolute value) than the positive ones. In fact, the sum of M1 components is
123, the sum of M2 components is 147, and therefore the sum of 4M components
is -24. The requested tiles in algorithm 1 are 24 tiles (or 16.33%) fewer than those
in algorithm 2.

Fig. 4. Di�erence between algorithms 1 and 2 in testing the data set 2.



762 HONGXIN MA, HUI QI, XIAOQIANG DI, JINQING LI, FENGRONG ZHANG

6. Conclusion

This paper studies the cache prefetch strategies, and proposes the heuristic
prefetch strategy based on road network analysis � a strategy that uses the re-
sults of road network analysis to correct the forecast results of heuristic prefetch
strategy. According to the test results, the prefetch strategy proposed by this paper
is superior to a pure heuristic prefetch strategy, e�ectively reducing the data volume
needed by cache system without sacri�cing the cache hit ratio. Meanwhile, since
road network analysis is usually realized through a navigation module, this prefetch
strategy can make use of the calculated results of the navigation module. Therefore,
as far as the whole navigation system is concerned, the application of this strategy
won't introduce additional computation overhead.

References

[1] J.Wang, Y.Wang, M.Yun, X.Yang : Development of Urban Road Network Tra�c
State Dynamic Estimation Method. Mathematical Problems in Engineering (2015),1�
10.

[2] X.Wang, L. Peng, T.Chi, M. Li, X.Yao, J. Shao: A Hidden Markov Model for
Urban-Scale Tra�c Estimation Using Floating Car Data.PLOS ONE 10 (2016), 1�10.

[3] J.Huang: An In-depth Study of LTE: E�ect of Network Protocol and Application
Behavior on Performance. in Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, New York, NY, USA, (2013),363�374.

[4] G.Wu, P.Huang, X.He: Reducing SSD access latency via NAND �ash program
and erase suspension.Journal of Systems Architecture60 (2014),345�356.

[5] L.Xiong, Z.Xu, H.Wang, S. Jia, L. Zhu : Prefetching Scheme for Massive Spa-
tiotemporal Data in a Smart City.INTERNATIONAL JOURNAL OF DISTRIBUTED
SENSOR NETWORKS (2016),11�11.

[6] H.Zhao,B. Shneiderman: Colour�coded pixel�based highly interactive Web map-
ping for georeferenced data exploration.International Journal of Geographical Informa-
tion Science 19 (2005) 413�428.

[7] H.Kirchner, R.Krummenacher, D. Edwards. may, T.Risse: A Location-aware
Prefetching Mechanism, in 4th International Network Conference (INC 2004), Uni-
versity of Plymouth, Plymouth. Sadhana (2004), 453�460.

[8] D. -J. Park, H. -J.Kim: Prefetch Policies for Large Objects in a Web-enabled GIS
Application.Data Knowl.Eng.37 (2001),65�84.

[9] D.Lee, J.Kim, S.Kim, K.Kim, K.Yoo-Sung, J. Park: Adaptation of a Neighbor
Selection Markov Chain for Prefetching Tiled Web GIS Data. in Advances in Informa-
tion Systems 2457 (2002),231�222.

[10] R.Li, R.Guo, Z.Xu, W.Feng: A prefetching model based on access popularity for
geospatial data in a cluster-based caching system. International Journal of Geographical
Information Science 26, (2012),1831�1844.

Received November 16, 2016


	Hongxin Ma, Hui Qi, Xiaoqiang Di, Jinqing Li, Fengrong Zhang: An improved strategy of map cache prefetching
	Introduction
	Related work
	Heuristic prefetch strategy
	Heuristic prefetch strategy based on road network analysis
	 Analysis of test results
	Conclusion


